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Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed
ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms,
RIU. These new basis sets have significant potential to (1) give some speed-up (estimated
at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF)
and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and
(2) give very large speed-ups for calculations of core-dependent properties, such as electron density
at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current
use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes.
This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations
compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this
methodology, particularly for the second application. As well as the reduction in the total primitive
number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant
reduction in the number of mathematically complex intermediate integrals after modelling each ramp-
Gaussian basis-function-pair as a sum of ramps on a single atomic centre. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4916314]

I. INTRODUCTION

Over the last couple of decades, quantum chemistry has
become a mainstream tool for simulating chemical systems
in a wide variety of sciences including organic chemistry,
biology, condensed matter physics, astronomy, and more.
Key to this widespread utilisation is the development of very
fast methods of performing quantum chemistry calculations
(particularly density functional theory (DFT)) using Gaussian
basis functions. Specifically, the evaluation of two-electron
integrals1 is the bottleneck for most Hartree-Fock (HF) and
DFT calculations; modern quantum chemistry was largely
made possible by key developments in integral evaluation
algorithms,2–6 particularly recurrence relations,7–9 in the 1980s
and 1990s combined with implementation of these algorithms
in widely available, near ”black-box” codes.

A pure Gaussian of exponent α and angular momentum
quantum numbers ℓ,m is

Gαℓm(r) = N G
αℓm exp(−αr2) rℓYℓm(θ,φ), (1)

where Yℓm are real spherical harmonics and N G
αℓm

=


(ℓ+1)!
(2ℓ+2)!

(8α)ℓ+3/2
√
π

. A s-Gaussian centered at A will be denoted
by sAα and a generic Gaussian by G.

Despite their widespread utilisation, Gaussian basis func-
tions have some key shortcomings. In particular, it was
recently shown10 that the inability of Gaussian basis functions
to model the nuclear-electron cusp11 leads to their sub-
exponential convergence behaviour,12–16 i.e., the error in the
energy of a n-term all-Gaussian approximation to a hydrogenic
1s wavefunction scales as exp(π√3n). This can be clearly

a)Author to whom correspondence should be addressed. Electronic mail:
laura.mckemmish@gmail.com

illustrated by considering the common Pople basis set, 6-31G.
Even though chemistry occurs in the valence region (and is
described by the “3” and “1” basis functions), 6 Gaussian
primitives are required to describe the core adequately.

This author and collaborators recently proposed17 the use
of a novel type of basis function, the ramp, to describe electron
distribution in the core region of atoms. A ramp with degree n
and radius 1 is given by

Rnℓm(r) = N R
nℓm




(1 − r)n rℓYℓm(θ,φ) : r ≤ 1
0 : r > 1

, (2)

where, for convenience, we define N R
nℓm =


(2n+2ℓ+3)!
(2n)!(2ℓ+2)! . A

ramp function has the normalization ⟨Rnℓm|Rnℓm⟩ = 1. A
S-ramp centered at A will be denoted by SA

n and a generic
ramp by R. Sn ramps have a cusp (i.e., a discontinuous
first derivative at r = 0), which allows them to capture the
behaviour of molecular orbitals close to nuclei11 better than
Gaussian functions.

Specifically, we introduced the R-31G basis set as an
alternative to the commonly used 6-31G basis set; the former
is obtained by replacing the 6 Gaussian primitives by 1 ramp
and 1 Gaussian primitive. The value of n in Eq. (2) was
chosen to maximise the overlap between the ”6” and ”R” basis
functions; in practice, this meant that n = Z + 1 for the first-
row atoms. As the valence basis functions were unchanged, the
chemistry (relative energies) produced by UHF/R-31G and
UHF/6-31G calculations was identical for small molecules
to within 1 kcal/mol. We provided reasons to suggest that
calculations with the R-31G basis set might be faster than with
the 6-31G basis set, but deferred detailed timing considerations
to this manuscript.

0021-9606/2015/142(13)/134104/14/$30.00 142, 134104-1 © 2015 AIP Publishing LLC
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Ramps can efficiently describe the core region with very
few basis functions. Mixed ramp-Gaussian basis sets are
therefore suitable for calculations that have traditionally been
very difficult to do with all-Gaussian basis sets, in particular,

• nuclear magnetic resonance properties, such as chemi-
cal shift and J-J coupling,

• relativistic corrections,
• all-electron basis sets for heavy atoms,
• convergence to the complete Hartree-Fock basis set

limit or spectroscopic accuracy for various properties,
such as total energies.

There are at least two major, and very different, types of
applications in which mixed ramp-Gaussian basis sets can find
utility:

1. Fast, everyday calculations where they will speed up
Hartree-Fock and DFT calculations for large molecules,
using small to moderate size basis sets.

2. Specialised or high accuracy quantum chemistry calcula-
tions as discussed above.

The first application requires the speed of two-electron integral
calculations in a mixed ramp-Gaussian basis set to be faster
than in comparable quality all-Gaussian basis sets. This is a
strong, but (as we shall see) feasible demand on this new basis
set class. The second has more modest speed requirements;
mixed ramp-Gaussian basis sets will be useful as long as
the calculation times are reasonable (say within a factor of
5 of a comparable sized all-Gaussian basis set calculation)
because they deliver far superior results. The usefulness of
non-Gaussian basis sets with improved cusp properties is
illustrated most starkly by considering the current use18 of
Slater basis sets19–21 for specific purposes despite the very
long integral evaluation times,22,23 as well as more generally
in the Amsterdam Density Functional (ADF) program.24 Thus,
despite more than 80 yr of investigation,25–28 research is
still undertaken29–41 to improve integral evaluation for Slater-
type orbitals to make these calculations competitive with
all-Gaussian calculations. Given this, mixed ramp-Gaussian
basis sets arguably encapsulate the best of both worlds:
characteristics similar to all-Slater basis sets with the potential
to match or better all-Gaussian calculation speeds.

Some might argue that mixed ramp-Gaussian basis sets
are not suitable for the first application because the time spent
on integrals involving the core is negligible compared to the
total cost of the calculation. In Sec. II, we address this issue by
comparing the time for a 6-31G, 2-31G, and 1-31G calculation
in a series of moderate-sized (18-55 heavy atoms) molecules.
We see that the R-31G basis set could provide savings of up to
40% (if the speed of ramp-containing integrals is negligible),
though savings of up to 20%-30% are a more reasonable
estimate of the potential savings available in highly optimised
code using this basis set. The impact of this improvement
should be placed in context of the widespread use of density
functional theory worldwide.

Similar mixed ramp-Gaussian basis sets were initially
investigated by Bishop42,43 and Steiner44–51 in the 1960s-
1980s. Unfortunately, the molecular calculations performed

by Steiner (up to H2S) are too small to indicate whether or not
his methodology was feasible for systems with large numbers
of atoms, and he published no further results in this area after
1987.

This paper describes methods for efficient two-electron
integral evaluation in mixed ramp-Gaussian basis sets, improv-
ing significantly on the original methodologies employed by
Steiner,48,50 inspired partly by recent developments in the
efficient evaluation of all-Gaussian integrals, such as density
fitting.52–58

Section III details the necessary pre-processing at the
shell-pair level for efficient two-electron integral calculation.
We redefine the shell-pair cutoff criteria for all-Gaussian shell-
pairs to allow an analogous criterion to be constructed for
ramp-Gaussian shell-pairs. Of particular note is the decision
to model all ramp-Gaussian basis-function-pairs (BFPs) as a
sum of ramps in a density-fitting type approach. This leads to
the replacement of the concept of a shell pair (used to group
all-Gaussian BFPs, G) by the concept of a nuclear centered
group (used to group ramp-containing BFPs, R). A nuclear
centered group contains all R with a ramp on a single atomic
center. This is a much larger grouping that in shell-pairs and
allows reuse of intermediate quantities to a far greater extent.

Section IV details the methodology used to evaluate
intermediates for two-electron integrals. Shell pairs and ramp-
containing nuclear-centered groups with themselves and each
other. We distinguish between integrals where the component
shell pairs have significant overlap (short-range integrals)
and when they have negligible overlap (long-range integrals).
All complex mathematical operations are done at this stage of
the two-electron integral evaluation process.

Section V details the way in which this intermediate
quantities are combined to give full two-electron integrals,
using simple multiply-adds and memory look-ups. In partic-
ular, we show the differences in loop structures between
different classes of integrals. We demonstrate clearly that
the intermediates for ⟨G|r−1

12 |G⟩ have to be calculated once
for every pair of Gaussian shell pairs, whereas the interme-
diates for ⟨R|r−1

12 |G⟩ only have to be calculated for every
set of atom/Gaussian shell-pair and the intermediates for
⟨R|r−1

12 |R⟩ are only calculated once for each pair of atoms.
This significantly improves the speed of the calculation
of two-electron integrals involving ramp-containing BFPs
and therefore increases the competitiveness of mixed ramp-
Gaussian basis sets compared to all-Gaussian basis sets.

These methods have been implemented in the standalone
Fortran90 program, RIU, to produce a fully functional
Hartree-Fock package to evaluate HF energies for molecules
containing first-row atoms, with S-ramps, s-Gaussians, and
p-Gaussians. It can also be used to produce one- and two-
electron integrals for other quantum chemistry routines, e.g.,
Q-CHEM’s DFT and MP2 packages. This program is freely
available online on the author’s website, or by contacting the
author via email.

In Sec. VI, we perform timing comparisons between
the unrestricted Hartree-Fock matrix evaluation time for
UHF/R-31G and UHF/6-31G in moderate sized molecules,
and compare the timings for calculation of different integral
types in UHF/R-31G calculations.
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In the supplementary material,59 we detail preliminary
investigations into the gradient and second derivative integrals
demonstrating that no singularities arise and that similar
integral evaluation techniques as considered in the main paper
are applicable for the derivative integrals.

II. MAXIMUM AND BENCHMARK POTENTIAL
SAVINGS OF R-31G OVER 6-31G

In this section, we investigate timings in all-Gaussian basis
sets with different numbers of core primitives to get an idea of
the savings possible with a rampified basis set.

A key component of the speed of modern quantum
chemistry codes is the screening of two-electron integrals,
usually using the Schwarz inequality as an upper bound to
the integral value. As a preliminary, proof-of-principle code,
for simplicity, RIU does not implement this screening.
We, thus, further investigate whether screening significantly
influences this potential time saving of R-31G compared to
6-31G.

R-31G calculations cannot be faster than 1-31G calcula-
tions; therefore, the maximum possible time saving of R-31G
over 6-31G is given by

Maximum % Saving =
6-31G time − 1-31G time

6-31G time
. (3)

Table I shows that both with and without screening, the
maximum possible saving is between 19% and 41%; screening
therefore is expected to not have a significant influence on the
time savings with a R-31G basis set over a 6-31G basis.

It is useful to define the 2-31G basis set as the R-31G
basis with the ramp primitive replaced by a Gaussian primitive
with exponent A that maximises ⟨Sn |sA⟩. For simplicity, the
coefficients of the two Gaussian primitives used in the basis
set definition of 2-31G are inherited from the coefficients
of the ramp and Gaussian in R-31G, with the automated
renormalisation of basis functions in Q-CHEM used to ensure

TABLE I. Maximum possible and benchmark percentage time savings of
R-31G over 6-31G with and without two-electron screening for a set of
molecules. All timings in this table were performed with 1 cpu on a Fujitsu
Primergy cluster, using production version Q-CHEM4.2 with the two minor
modifications outlined in Sec. VI. Details of molecules are in Table III.

% saving without
screening

% saving with
screening

Max Benchmark Max Benchmark

Linear molecules

Alkane-30 38 29 32 25
Alkane-55 38 24 19 19
Stearic acid 33 26 37 25
Montanic acid 34 22 36 26
Octatriacontanoic acid 33 27 44 31

Non-linear molecules

Fullerene-20 37 34 39 33
Fullerene-28 41 27 30 24
Cholesterol 34 25 29 21

normalisation of the new “2” function. For carbon, the value
A = 21.751 is used (where n = 7 for the R-31G basis set for
carbon).

A good indication of the actual savings that could be
achieved in an optimal code is to compare a 2-31G to 6-31G
calculation time: the 2-31G calculation time will be equal to
the R-31G calculation time if the integrals in a mixed ramp-
Gaussian basis set are assumed to be exactly as fast as in an
all-Gaussian basis set. Thus, the benchmark savings of R-31G
compared to 6-31G are given by

Benchmark % Saving =
6-31G time − 2-31G time

6-31G time
. (4)

Table I gives a benchmark of 19%-34% savings for optimal
R-31G code over 6-31G code based solely on the reduction
of the number of primitives. This seems slightly smaller when
screening is applied than without screening, but this effect is
less than the influence of different molecules. Actual savings
will differ from this value depending on algorithmic and
implementation details of the integral evaluation.

It is worth commenting on how these potential savings
change for different basis sets. In larger basis sets (especially
those with many polarisations or diffuse basis sets), less
calculation time is spent on integrals that contain the core basis
function; therefore, possible savings are reduced. However,
for heavier elements, there are more core basis functions to
rampify and savings should thus be greater.

Rampification of a different class of basis set (e.g., Pople,60

Dunning,61 Jensen,62 and ANO63) is expected to yield very
similar results to those described for 6-31G vs R-31G, that is,
the chemical (relative) energetics will be very similar, and there
is the potential for modest potential time savings. Note that
all basis sets with general contraction should be converted to
their segmented contracted version (e.g., following the Jensen
procedure64) before rampification.

Current investigations of mixed ramp-Gaussian basis sets
have focused on replacing all-Gaussian basis sets with new
basis sets that aim to produce very similar chemistry. This has
been done so that the effect of rampification can be isolated
from other basis set design considerations, and permit more
careful comparisons. However, future development of entirely
re-optimised ramp-Gaussian basis sets is desirable, and could
increase time savings.

III. SHELL-PAIR PROCESSING

Our first paper17 describes methods of calculating required
one-electron integrals. As this is not a time critical part of the
overall code, we will not discuss efficient calculation of these
integrals; optimisation is usually not essential beyond ensuring
memory requirements are kept sufficiently low.

At the shell-pair level, there are two tasks that are critical
to ensuring fast two-electron integral evaluation:

• The decision to keep or discard each possible shell-pair
must be made.

• Often, simplification and/or modelling of each signifi-
cant shell-pair is performed.

We will look at both of these in turn in this section.
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A. Density ramps

A density ramp with degree n and radius 1 is given by

Rnℓm(r) = NRnℓm



(1 − r)n rℓYℓm(θ,φ) : r ≤ 1
0 : r > 1

,

where for convenience we define

NRnℓm =
(n + 2ℓ + 3)!
n!(2ℓ + 2)! . (5)

The density ramp is of the same form as the orbital ramp
as defined in Eq. (2) except that it has the “unit multipole”
normalization, i.e., ⟨Rnℓm|rℓYℓm⟩ = 1. An S-type density ramp
centered at A will be denoted by SAn and a generic density ramp
by R.

B. Negligible and significant shell-pairs

The first task in shell-pair processing in preparation for
two-electron integral evaluation is to reduce the number of
basis-function-pairs (BFPs), by removing all that contribute
negligibly to one- and two-electron integrals.

RR BFPs are very easy to consider. Two non-concentric
ramps have strictly zero overlap if the interatomic distance is
greater than 2 a0 (as is assumed in this paper for bonds not
including H (which doesn’t have ramps)). Note that even if
the bond distance is less than 2 a0, significant errors will not
immediately arise by neglecting this kind of shell pair because
the two basis functions are very tight and thus the overlap is
low. For example, if we have a C-C bond (n = 7), the overlap
between two normalised ramps only exceeds 10−10 at bond
lengths shorter than 1.62 a0.

In Q-CHEM, traditionally G G shell-pairs are neglected
based on the prefactor after the Gaussian product rule is
applied, where the Gaussian product rule is given by65 sA

αsB
β

= GABsP
ζ , where ζ = α + β, GAB = exp[−αβζ−1|A − B|2] and

P = (αA + βB)/ζ . The Q-CHEM shell-pair cut-off criteria
takes two primitive shell-pairs GA

αi
and GB

α j
with contraction

coefficients Di and D j and eliminates this G G shell-pair if
������
Di D j N G

αi00 N G
β j00 e

−
αiβ j
ζi j

|A−B|2������
≤ 10−thresh, where thresh is set

in the program input depending on the desired accuracy; 8-10
is usual for energy calculations. (All calculations in this paper
use thresh = 10.)

However, it is not obvious how to translate this criteria
to R G shell-pairs which don’t combine in the same way. In
the interests of fair timing comparison, we have altered the
criteria for shell-pair cut-offs in Q-CHEM to directly involve
the overlap integral of the radial component of the G G shell
pairs, i.e., the shell-pairs are eliminated if
���Di D j ⟨sA

αi
|sB

β j
⟩���

=

������
Di D j N G

αi00 N G
β j00

(
π

ζi j

)3/2

e
−
αiβ j
ζi j

|A−B|2������
≤ 10−thresh.

(6)

With this new criteria for neglect of G G integrals, we
can form a completely analogous criteria for R G BFPs where
shell-pairs are eliminated if

����Di D j ⟨SA
n |sB

β j
⟩���� ≤ 10−thresh.

C. Simplifying and modelling basis-function-pairs

One of the most critical tasks at the basis-function-pair
level in terms of its influence of the overall time of the quantum
chemistry calculations is to simplify the representation of each
BFP.

Simplifying a RR BFP is straightforward using the ramp
product rule whereby two concentric ramps collapse into a
single ramp; for S-ramps, Sn1Sn2 = (2π1/2)−1Sn1+n2.

The radial components of a ss BFP can be combined by
using the Gaussian product rule.

Both the ramp product rule and the Gaussian product
rule convert BFPs from a function with two centers and two
parameters (ramp degrees and exponents) to a function with a
single center and single parameter (with a trivial normalisation
factor). The inability of two exponentials to simplify in a
similar fashion has been the key reason for the difficulty of
calculating Slater two-electron integrals.18

There is no similar rule for simplifying ramp-Gaussian
BFPs. Instead, we choose to model ramp-Gaussian basis-
function-pairs as a sum of density ramps on the ramp atomic
center, i.e.,

RA GB ≈
K
k=1

cnkℓkmk
RA
nkℓkmk

, (7)

where the coefficients, cnkℓkmk
, are found by least-squares

fitting and the set of all RA
nkℓkmk

is the model basis set.
There are two key decisions involved in the modelling

process: the metric used in the least-squares fitting and the
choice of the model basis set (the equivalent of the auxiliary
basis set66 in density-fitting55,67–69 of Gaussian-Gaussian
products). Empirically, we find that modelling concentric R G
shell-pairs with high Gaussian exponents is most challenging,
necessitating careful selection of both fitting metric and model
basis set; we have discussed this case in detail.17 Modelling of
non-concentric shell-pairs is more forgiving of fitting metric
and model basis set, though more careful selection of these
will enable shorter model lengths whilst retaining accuracy.
Improvements to this procedure will improve the short-range
timings, but have no influence on the timings for long-range
integrals.

Note that after simplification, all ramp-containing BFPs,
R, contain no details about the Gaussian primitives, ramp
degrees, or contraction coefficients of the two individual basis
functions.

It is also useful to consider a long-range representation of
R that stores only the multipole moments of the BFPs. This
representation can be written as

R =

ℓm

Mℓmfℓm, (8)

where fℓm is the unit ℓm multipole vector and Mℓm is the
magnitude of ℓm multipole.

We choose the multipole moment operator as given by

M̂ℓm(ρ(r)) =


ρ(r)rℓYℓmdr. (9)

Note that this differs from the common definition used by, e.g.,
Stone70 and Hättig71 by excluding a factor of


4π

2ℓ+1 . This is to
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simplify our mathematical presentation. Note this definition
means that a “unit” f00 multipole moment has a charge of
2
√
π.

By definition of the density ramps, the

M̂LM(Rnℓm) =



1 : L = ℓ and M = m
0 : otherwise

. (10)

We can build on the short-range representation of R to
find the ℓm multipole moment of R, which is given by

Mℓm = M̂ℓm(R) =

n

cnℓm. (11)

It is also possible to find the multipole moments of Ss and
Sp directly, rather than through their models.

Though clearly different basis-function-pairs require
different ℓ,m multipole components in their multipole expan-
sion, it is computationally more efficient to keep the size of the
multipole expansion fixed. In RIU, we use multipoles up
to ℓ = 4 to retain accuracy in the integrals and final energies.

D. The nuclear-centered group: Replacing the concept
of a shell-pair for R G and RR basis-function pairs

Figure 1 shows how Gaussian-Gaussian basis-function
pairs are grouped into shell-pairs. Each shell-pair contains
only a small number of basis-function-pairs, depending on
angular momentum of each shell. For a fixed molecule size,
the number of shell-pairs in a molecule grows with the number
of basis-functions squared.

Shell-pairs are important for efficient calculation of all-
Gaussian two-electron integrals because integrals involving
each basis-function-pair within a shell-pair can usually be
found from a single set of intermediate quantities. Calculating
these intermediate quantities for the whole shell-pair together,
and only differentiating between basis-function-pairs within a
shell-pair as late as possible makes integral evaluation much
more efficient.

In contrast, Figure 2 shows that all ramp-Gaussian
BFPs can be divided into nuclear-centered groups based on
the atomic center of the ramp. Each nuclear-centered-group
contains all BFPs (both R G and RR) involving the ramp on
the atomic center, a much larger number than the number of
BFPs in each shell-pair. The total number of nuclear-centered
groups grows with the number of heavy atoms, much slower
than the total number of shell-pairs. Very dense basis sets (e.g.,
a large number of functions on each atom) will have the same
number of nuclear-centered groups as minimal basis sets.

All of the time consuming steps of integral evaluation,
such as evaluation of erf and exp functions and numerical
integration, are done once for each nuclear-centered group
for a small subset of parameters associated with each density
ramp or unit multipole moment and stored as a look-up table.
This is analogous to the calculation and storage intermediate
quantities for integrals involving a particular shell-pair. For a
particular integral involving an individual ramp basis-function-
pair, it becomes a simple digestion process; a set of multiple
adds using values from the small look-up table and the
model coefficients, cnℓm, or multipoles, Mℓm, from the BFP
information. This is analogous to using the intermediates for

FIG. 1. Diagrammatic representation of a set of Gaussian-Gaussian basis-
function-pairs into shell-pairs.

shell-pairs to produce all the related two-electron integrals.
In this manner, the need for the concept of ramp shell-pair is
superseded by this much larger grouping of ramp BFPs with
common integral intermediates. Since there are fewer nuclear-
centered groupings than shell-pairs, the reuse of intermediate
data is greater for two-electron integrals involving ramp-
containing BFPs R than those involving Gaussian-Gaussian
BFPsG.

IV. INTERMEDIATE TWO-ELECTRON INTEGRAL
QUANTITIES IN MIXED RAMP-GAUSSIAN BASIS SETS

Two-electron integrals are central to quantum chemistry
calculations; their efficient evaluation is critical to fast Hartree-
Fock, most DFT and many MP2 calculations. The form of
this integral and the difficulty of evaluating it efficiently and
accurately are determined by the basis set chosen for the
calculation.

A mixed ramp-Gaussian basis set has Gaussian-Gaussian
BFPsG (that have been considered in depth over the last half
century) and also introduces a new kind of basis-function-pair,
R. There are two representations of this new ramp-containing
basis-function-pair.

(a) Short-range representation—used when interacting with
overlapping BFPs: R =


nℓm cnℓmRnℓm.

(b) Long-range representation—used when interacting with
non-overlapping (or negligibly overlapping) BFPs: R
=


ℓm Mℓmfℓm.
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FIG. 2. Diagrammatic representation of a set of ramp-Gaussian basis-
function-pairs into nuclear-centered groups.

For simplicity, in this section, we will consider the inter-
actions of the individual components of the representations,
i.e., Rnℓm and fℓm, with each other and with Gaussian-
Gaussian shell pairs. Section V details how to combine
these intermediate quantities to get the full two-electron
integrals. Note that the intermediate quantities contain all
necessary complex mathematical operations, e.g., erf, exp,
sqrt, divide, and trigonometric operators; combining these
quantities requires only simple multiply-adds.

In this manuscript and the associated RIU code,
we consider a single primitive component of Gaussian-
Gaussian shell-pairs, i.e., sQ; future implementations should
take advantage of contraction. However, it is not as important
in the R-31G basis set as the 6-31G basis set because the
average degree of contraction is much smaller.

A. Intermediate integrals for ⟨G|r−1
12 |G⟩

The evaluation of ⟨G|r−1
12 |G⟩ has been the subject of

decades of research, for good reviews and detailed equations

see Refs. 72 and 73. For our purposes, it is sufficient to note
that a set of intermediate integrals have to be recalculated for
every all-Gaussian shell-quartet. For large

(ζη(ζ + η)−1)RPQ

(i.e., negligible overlapping bra and ket), significant simpli-
fications can be made, decreasing the calculation time per
intermediate integral.

Later, in the loop structures discussed in Sec. V, these
intermediate integrals are combined using vertical and hori-
zontal recurrence relations in the PRISM algorithm9 (or
similar) to give the final two-electron all-gaussian integral.

B. Intermediate integrals for ⟨R|r−1
12 |R⟩

1. Short-range: Concentric bra and ket, ⟨RA|r−1
12 |RA⟩

For concentric ramps, only density ramps of the same
angular momentum have a non-zero Coulomb interaction. In
this case,

⟨RA
n1ℓm

|RA
n2ℓm

⟩ = NRn1ℓm
NRn2ℓm

4π
2ℓ + 1

Γ[3 + 2ℓ]Γ[3 + nt]
Γ[6 + 2ℓ + nt]

× *
,

2l
(n1 + 1)(n2 + 1)

+
n2

1 + n2
2 + 9nt + 3n1n2 + 16

(n1 + 1)(n1 + 2)(n2 + 1)(n2 + 2)
+
-
, (12)

where nt = n1 + n2.
These intermediate values are computed once at the

beginning of all RIU jobs and stored as a look-up table.

2. Long-range: Non-concentric bra and ket,
⟨fA|r−1

12 |fC⟩
It is most efficient to calculate the interaction of two non-

concentric ramp-containing BFPs by interacting their real pure
multipole moments.

With the definition, we choose for multipole moments f,
the interaction of two unit (0,0)-multipoles at centers A and C
is given by ⟨f00(A)|r−1

12 |f00(C)⟩ = 4π
RAC

.
We refer the reader to Hättig71 for efficient recurrence

relations for the calculation of ⟨fℓm(A)|r−1
12 |fλµ(C)⟩, which

are obtained by simple multiplication from the elements of the
real spherical multipole interaction tensor discussed in Hättig,
i.e., ⟨fℓm(A)|r−1

12 |fλµ(C)⟩ = 4π√
(2ℓ+1)(2λ+1)T

λµ
ℓm.

These intermediate values are computed once for each
pair of atoms; this makes it a relatively rare operation.

C. Intermediate integrals for ⟨R|r−1
12 |G⟩

1. Short-range: Overlapping bra and ket, ⟨RA|r−1
12 |sQ⟩

Integration over all angular degrees of freedom and
one radial degree is relatively straightforward if the angular
momentum of the ramp shell pair is specified. The remaining
one-dimensional integral is smooth and over a compact domain
of 0 to 1. For a single model component, the integral has the
form
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⟨RA
nℓm|r−1

12 |sQ
ζ ⟩ =

8π3/2

√
1 + 2ℓ

N G
ζ00NRnℓmYℓm[Θ,Φ]

×
 1

0
(1 − r)n hℓ[r; ζ,R]dr, (13)

where R,Θ,Φ are the spherical coordinates of RAQ and
Hℓ[r; ζ,R] contains terms dependent on the angular mo-
mentum ℓ, for example,

H0[r; ζ,R] = r
8Rζ2

(
π1/2ζ1/2

((r − R) erf
(−r + R)ζ



+ (r + R) erf
(r + R)ζ

 )
− 2e−(r2+R2)ζ sinh[2r Rζ]

)
. (14)

We give expressions for ℓ = 1,2,3 in the supplementary
material.59

We evaluate these expressions using Gauss-Legendre
quadrature, i.e.,

⟨RA
nℓm|r−1

12 |sQ
ζ ⟩

=
8π3/2

√
1 + 2ℓ

N G
ζ00NRnℓmYℓm[Θ,Φ]

×

i


wi

(
− (1 − r)n+1(1 + r + nr)

(1 + n)(2 + n)
)

Hℓ[ri; ζ,R]

,

(15)

where wi and ri are the weights and abscissas of Gauss-
Legendre quadrature. This quadrature is most difficult when
R is small and ζ is large; however, for realistic molecules,
R > 1.5, and for a R-31G basis set, ζ < 40. Future ramp-
Gaussian basis sets should retain similar bounds; removing the
very large exponent Gaussian primitives is one of the primary
reasons for ramifying basis sets.

Some may view numerical quadrature as undesirable.
However, in this case, we have a small, finite domain on
a reasonably smooth 1D integral; therefore, the number of
quadrature points to ensure high accuracy is quite small (we
conservatively use 41 in all cases). Furthermore, this is an
intermediate integral done outside the inner-most loop of the
two-electron integral evaluation; it only has to be done once
for every atom paired with every Gaussian shell-pair. Last, it
is an intermediate component of a short-range integral; for a
sufficiently large molecule, long-range integrals will dominate
the timings.

Note that we must take care with the limits of these
formulae when R = 0 due to the presence of terms like
erf [ζ(R + r)]/R.

2. Long-range: Negligibly overlapping bra and ket,
⟨fA|r−1

12 |sQ⟩
The simplest case of the interaction of a unit multipole

f00 at A with a normalised s Gaussian at Q is given by

⟨fA
00|r−1

12 |sQ
ζ ⟩ = 2

√
π

(
2π
ζ

)3/4 1
R
. (16)

The interaction of a unit multipole fℓm at A with a
normalized s Gaussian at Q is given by

⟨fℓm(A)|r−1
12 |sQ

ζ ⟩ = ⟨fℓm(A)|r−1
12 |f00(Q)⟩M̂(sζ), (17)

=

(
π

2

)1/4
ζ−3/4

× ⟨fℓm(A)|r−1
12 |f00(Q)⟩. (18)

This has to be calculated for once for each atom paired
with each Gaussian shell-pair.

3. Higher Gaussian angular momentum integrals

The integrals involving sp and pp kets were found by
Boys differentiation,74 e.g., pxA

α =
1

2α
d

dAx
sA
α. These formula

utilised the ⟨R|r−1
12 |s⟩ integrals and derivative of these integrals

with respect to R, similar to the form used in all-Gaussian
integrals.

General recurrence relations for arbitrarily large Gaussian
angular momentum integrals have not yet been found, but
should be of similar form to those for all-Gaussian inte-
grals.1,7–9 Note that recurrence relations are not used to
relate ramps of differing angular momentum because Boys
differentiation cannot be used to transform ramps of one
angular momentum to a different higher angular momentum.

D. Significant or negligible shell-pair overlap

For each class of integrals, we have specified two different
methodologies for calculating the fundamental interaction
integral and noted that the choice between the two methods
depends on whether the bra and ket overlap significantly
or negligibly; in the latter case, we can simply interact the
multipole moments of the bra and ket to find the integral much
quicker than in the former case.

Just like in the shell-pair situation, we have to define what
we mean by “significant” and “negligible” overlap; a definition
that is too stringent (i.e., give more overlapping shell-pairs)
will cause the program to run much slower, whereas too loose a
definition (too few overlapping shell-pairs) will give inaccurate
results.

For ⟨R|r−1
12 |R⟩, this decision is easy because non-

concentric bra and kets have zero overlap due to the ramp’s
compact support.

For ⟨G|r−1
12 |G⟩ integrals in Q-CHEM, the parameter, T

=
ζη
ζ+η

R2
PQ is used to determined the cutoff, with Tcrit = (thresh

+ 2) ln(10), where again thresh is set in the program input; 8-10
is usual. T > Tcrit indicates negligible overlap while T ≤ Tcrit
indicates significant overlap. This is justified by the presence
of terms like erf(√T) and exp(−T) which reach limiting values
of 1 and 0, respectively, for large T .

There are similar limits we can take in evaluating
⟨R|r−1

12 |G⟩, for example, T = ζR2
PQ where R2

PQ ≫ 1. Like in
the all-Gaussian integral case, we compare T with Tcrit to
determine whether to use short-range or long-range algorithm
to evaluate ⟨R|r−1

12 |G⟩.

E. Summary

Now that we have a methodology for calculating each of
these intermediate quantities, it is informative to compare and
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TABLE II. Number of intermediate two-electron integrals and related quantities for generic molecules and for benzene, M= 6,Ng = 366,K= 25, κ = 235, c
≈ 1/3.

Total number of ⟨RA|r−1
12 |RA⟩ ⟨fA|r−1

12 |fC⟩ ⟨RA|r−1
12 |sQ⟩ ⟨fA|r−1

12 |sQ⟩ ⟨sP|r−1
12 |sQ⟩

Intermediates with 1 nuclear-centered group and 1 ss ≈K(κ/K )2 K2 κ K 1
Brakets with 1 nuclear-centered group and 1 ss 1a M2 cMNg (1−c)MNg N2

g

All intermediates ≈K(κ/K )2 M2K2 cκMNg (1−c)KMNg N2
g

Intermediates in HF/R-31+G for benzene 2025 22 500 172 020 36 600 133 956
Intermediates in HF/6-31+G for benzene 0 0 0 0 54 819 216
Expensive operations Γ, / trig, 1/R erf, exp, trig, 1/R trig, 1/R erf, 1/R

aPrecomputed once at the beginning of the calculation and stored.

contrast these algorithms in order to answer questions such as
how many of these intermediate quantities there are and how
expensive they are to calculate.

To assist in this analysis, the following definitions are
useful:

Ng = number of G G shell-pair primitives
M = number of non-hydrogen atoms
κ = the average total number of unique model compo-
nents across all nuclear-centered groups of R
K = number multipole moment components calculated
for each R (25 in RIU)
c = fraction of overlapping shell-pairs vs. non-over-
lapping shell pairs in a large molecule.

In general, κ ≫ K and Ng ≫ M. The number of nuclear-
centered groups will also be M. c decreases for larger
molecules.

Table II demonstrates that

• ⟨RA|r−1
12 |RA⟩ is both cheap and not computed often.

• ⟨fA|r−1
12 |fB⟩ has moderate cost but is not computed

often.
• ⟨RA|r−1

12 |sQ⟩ is relatively expensive and computed often.
However, the prefactor c means that the number of
these interactions will scale much more gently with
the overall size of the system than the other kinds of
intermediate quantities

• ⟨fA|r−1
12 |sQ⟩ has moderate cost but is computed often,

more so in large systems.
• ⟨sP|r−1

12 |sQ⟩ has moderate cost and is computed most
often by far because the number of G G shell-pairs will
generally be much greater than the number of atoms.

• There are far fewer intermediate quantities in a HF/R-
31 + G basis set (less than 0.5 × 106 in benzene)
compared to in a HF/6-31 + G basis set (almost 55
× 106 in benzene!)

V. EFFICIENT LOOP STRUCTURE
FOR TWO-ELECTRON INTEGRALS IN MIXED
RAMP-GAUSSIAN BASIS SETS

To note that the time consuming operations (involved in
calculating the intermediate integrals) are done at different
stages in the loop depending on the type of two-electron

integral; at the pair of atoms level for ⟨R|r−1
12 |R⟩, at the

atom/Gaussian-shell-pair level for ⟨R|r−1
12 |G⟩ and at the shell-

quartet level for ⟨G|r−1
12 |G⟩. This has a significant influence

on the cost of the two-electron integral computation. In the
case of ⟨R|r−1

12 |R⟩ and ⟨R|r−1
12 |G⟩, some of the inner-most loops

can be recast as matrix-matrix or matrix-vector operations that
can be efficiently implemented as BLAS Level 3 and Level
2 subroutine, often significantly increasing the speed of the
calculation.

A. Calculation of ⟨G|r−1
12 |G⟩

Algorithm I provides the loop structure for calculating all-
Gaussian integrals. Note that the PRISM algorithm described
in Ref. 1 is currently one of the most efficient and general
ways of combining intermediate quantities to compute a full
class of all-Gaussian shell-quartets. This is the algorithm used
in Q-CHEM.

Note, in particular, that the integral ⟨G|r−1
12 |G⟩ depends

on the particulars of eachG shell-pair and the time consuming
elementary operations, such as erf, must be performed for each
shell-quartet separately.

B. Calculation of ⟨R|r−1
12 |R⟩

1. Short-range: Concentric basis-function-pairs

The integral ⟨RA|r−1
12 |RA⟩ is given by a sum of the

intermediate integrals

⟨RA
1 |r−1

12 |RA
2 ⟩

=

ℓm

*.
,


n1

cn1ℓm


n2

cn2ℓm⟨Rn1ℓm |r−1
12 |Rn2ℓm⟩+/

-
. (19)

The intermediate integrals ⟨Rn1ℓm|r−1
12 |Rn2ℓm⟩ are stored

in a look-up table.
The loop structure for evaluating ⟨RA|r−1

12 |RA⟩ is given in
Algorithm II. Note that in the inner-most loops, only simple
add-multiplies are required; all the more, expensive elementary

ALGORITHM I. Loop structure for ⟨G|r−1
12 |G⟩ integrals.

for each Gaussian shell pair do
for each different Gaussian shell pair do

Calculate [0]{m}, ⟨G|r−1
12 |G⟩ using PRISM algorithm.

end for
end for
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ALGORITHM II. Loop structure for ⟨RA|r−1
12 |RA⟩.

Create look-up table of ⟨Rn1ℓm |r−1
12 |Rn2ℓm⟩ value for all values of n1,n2, ℓ

in model basis set.
for atom A do

for each RA
1 do

for each different RA
2 do

Evaluate ⟨RA
1 |r−1

12 |RA
2 ⟩

end for
end for

end for

maths operations are in the evaluation of ⟨Rn1ℓm|r−1
12 |Rn2ℓm⟩

and not done within the loop structure.
This ⟨RA|r−1

12 |RA⟩ integral is rare; any reasonable imple-
mentation of Eq. (19) is adequate.

2. Long-range: Non-concentric ramps in the bra
and ket

The integral ⟨RA|r−1
12 |RC⟩ is given by a sum of the

intermediate integrals

⟨RA|r−1
12 |RC⟩

=

ℓ1m1

MR
A

ℓ1m1

*.
,


ℓ2m2

MR
C

ℓ2m2
⟨fA

ℓ1m1
|r−1

12 |fC
ℓ2m2

⟩+/
-
, (20)

=

ℓ1m1

MR
A

ℓ1m1
⟨fA

ℓ1m1
|r−1

12 |RC⟩. (21)

The loop structure used to evaluate this class of integrals
is given by Algorithm III. Note that the expensive steps
(evaluating ⟨fR

ℓ1m1
|r−1

12 |fR
ℓ2m2

⟩, including spherical harmonic
evaluation, and divide) are done at the pair-of-atoms level; the
inner most loops are simple multiply-adds.

If we retain a fixed number of ℓm multipoles for all R
in the same nuclear-centered group, the two inner-most loops
of Algorithm III can be coded as two BLAS matrix-matrix
multiplications.

C. Calculation of ⟨R|r−1
12 |G⟩

1. Short-range

The two-electron integral involving a contracted ramp-
containing basis-function-pair with many different ramp

ALGORITHM III. Loop structure for ⟨RA|r−1
12 |RC⟩.

Create look-up table of intermediate integral value for all possible values of
n1,n2, ℓ.

for atom C do
for atom A do

Evaluate ⟨fA
ℓ1m1

|r−1
12 |fC

ℓ2m2
⟩

for each RC do
Evaluate ⟨fA

ℓ1m1
|r−1

12 |RC⟩
for each RA do
Evaluate ⟨RA|r−1

12 |RC⟩
end for

end for
end for

end for

ALGORITHM IV. Loop structure for ⟨R|r−1
12 |s⟩ integrals with significant

basis-function-pair overlap.

for each primitive ss shell-pair do
for each atom A do

Evaluate ⟨Rnℓm |r−1
12 |sQ

ζ ⟩
for each R do

Evaluate ⟨RA���r
−1
12 |sQ

ζ ⟩
end for

end for
end for

model components and a primitive Gaussian-Gaussian shell-
pair is given by

⟨RA���r
−1
12 |sQ

ζ ⟩ =

nℓm

cnℓm⟨Rnℓm|r−1
12 |sQ

ζ ⟩. (22)

For effective evaluation, our program uses the loop
structure shown in Algorithm IV. Again, integrals involving
higher angular momentum Gaussians are evaluated using
a similar loop structure. Note that the more expensive
mathematical operations (evaluating ⟨Rℓm|r−1

12 |sQ
ζ ⟩ with erf,

exp, quadrature, etc.) are done outside the inner-most loop,
at the atom-Gaussian shell pair level. The innermost loop is
simple multiply-adds.

It is also possible to code the inner-most loop of Algo-
rithm IV as a BLAS matrix-vector multiplication. However,
this may not be efficient if the total number of model basis
functions used in a single nuclear-centered group is much
larger than the number used in one particular short-range R
representation, i.e., one replaces a disjoint sum of nℓm by the
full set of nℓm in the summation in Eq. (22).

2. Long-range

The two-electron integral involving a contracted ramp-
containing basis-function-pair and a primitive Gaussian shell-
pair is given by

⟨RA|r−1
12 |sQ

ζ ⟩ =

ℓm

MR
A

ℓm⟨fA
ℓm|r−1

12 |sQ
ζ ⟩. (23)

The loop structure to evaluate all two-electron integrals
of this class is given in Algorithm V. Note that integrals
involving higher angular momentum Gaussians are evaluated
using a similar loop structure. Again, we see that the expensive
operations are in evaluating ⟨fA

ℓm|r−1
12 |sQ

ζ ⟩ (which involves

ALGORITHM V. Loop structure for ⟨R|r−1
12 |s⟩ integrals with negligible

basis-function-pair overlap.

for each primitive Gaussian shell pair do
for each atom A do

Evaluate ⟨fA
ℓm |r−1

12 |sQ
ζ ⟩

for each RA do
Evaluate ⟨RA|r−1

12 |sQ
ζ ⟩

end for
end for

end for
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spherical harmonics, divide, etc.) and the innermost loop is
simple multiply-adds.

If we retain a fixed number of ℓm multipoles for all
R in the same nuclear-centered group, the inner-most loop
of Algorithm V can be coded as a BLAS matrix-vector
multiplication.

VI. TIMINGS

A. Method

We have written a Fortran90 program, RIU, to
calculate all ramp-containing integrals using the algorithms
discussed in this paper. To calculate all-Gaussian integrals, we
use Q-CHEM.

All-Gaussian integrals’ programs generally use direct
integral evaluation to minimise memory requirements for large
molecules; thus, we compare the time required for one Fock
build using 6-31G vs R-31G basis sets for a range of medium
sized molecules.

It is important that we do as much as possible to ensure
a fair comparison; nevertheless, a completely fair comparison

is impossible and so these numbers should be viewed only
as indicative of potential time savings offered by mixed
ramp-Gaussian basis sets over all-Slater basis sets and over
conventional all-Gaussian basis sets.

1. Details of RampItUp

RIU calculates all necessary two-electron integrals
for molecules with a basis set including S-ramps, s-Gaussians,
and p-Gaussians. It builds the full Fock matrix for the mixed
basis-set and then performs a UHF calculation. Basis functions
that have mixed S-ramp and s-Gaussian content, such as the 1s
basis function of the R-31G basis set, are correctly dealt with.

The program does screening of all BFPs, but no screening
of two-electron integrals, unlike Q-CHEM. It is anticipated
that screening of two-electron integrals in ramp-Gaussian
integrals can be done via similar methods (such as the Schwarz
inequality) as already used for all-Gaussian integrals.

RIU is a tool for preliminary exploration of the
feasibility of fast two-electron ramp-containing integrals.
Major effort was spent optimising the most common and
time critical classes of integrals, particularly the ⟨R|r−1

12 |G⟩

TABLE III. Comparative timings (in s) for a set of molecules for HF/6-31G v.s. HF/R-31G, rounded to the nearest second or 2 significant figures. The percentage
speedups are approximate only, especially for smaller molecules. These timings are done on a laptop with gfortran complied version of RIU and Q-CHEM.
All integral timings are without screening. Where appropriate, approximate geometries are indicated by the letters: “L” for linear, “LB” for most linear with
some branching, “P” for planar and “S” for spherical. Geometries for biomolecules and drugs are from ChemSpider75 (with Taxol reoptimised with hydrogens
added); ChemSpider IDs are listed in the table where appropriate. All other geometries were found with a simple force-field optimisation in IQ.76

ID Name
No
C

No
N,O,F

No
H Geometry ⟨R|R⟩

SR
⟨R|G⟩

LR
⟨R|G⟩

R-
containing 1-31G R-31G 6-31G % saving

Linear alkane chains

alkane-30 30 0 62 L 0.32 2.7 4.3 7.4 23 30 33 10
alkane-40 40 0 82 L 0.54 3.9 8.2 12 41 52 61 15
alkane-45 45 0 92 L 0.72 4.3 11 15 53 68 77 13
alkane-55 55 0 102 L 1.1 5.5 16 23 86 109 118 8

Saturated fatty acids

5091 Stearic acid 18 2 36 L 0.13 1.5 1.5 3.1 7.3 10 11 9
10035 Arachidic acid 20 2 40 L 0.15 1.7 1.9 3.7 9.1 13 14 9
7923 Behenic acid 22 2 44 L 0.19 1.8 2.4 4.5 11 15 17 9
10724 Lignoceric acid 24 2 48 L 0.21 2.0 2.9 5.2 13 18 21 14
10037 Cerotic acid 26 2 52 L 0.26 2.2 3.6 5.9 16 22 24 8
10038 Montanic acid 28 2 56 L 0.29 2.6 4.1 6.8 18 25 28 11
10039 Melissic acid 30 2 60 L 0.33 2.7 4.8 7.6 21 29 32 9
18168 Lacceroic acid 32 2 64 L 0.38 3.0 5.6 8.7 24 33 37 11
85266 Geddic acid 34 2 68 L 0.43 3.0 6.4 9.8 27 37 42 12
4445723 Hexatriacontanoic

acid
36 2 70 L 0.49 3.2 7.1 11 31 42 47 11

445725 Octatriacontanoic
acid

38 2 74 L 0.68 3.5 9.1 13 35 48 52 8

Triglycerines

62497 Triheptanoin 24 6 44 LB 0.48 4.3 5.0 9.6 20 30 29 −3
10393 Glycerol tricaprylate 27 6 50 LB 0.56 4.6 6.3 11 24 35 36 3
10394 Glycerin trilaurate 39 6 74 LB 0.93 6.1 12 19 47 66 68 3
10675 Trimyristin 45 6 86 LB 1.2 6.8 16 24 62 86 90 4
10674 Tripalmitin 51 7 98 LB 1.4 7.4 21 30 77 107 113 5
71374 Linolein 57 6 98 LB 1.7 7.9 24 33 83 116 126 10
4593733 Triolein 57 6 104 LB 7.3 27 67 35 94 129 139 8
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classes. However, only moderate effort was spent optimising
⟨R|r−1

12 |R⟩ integrals and little attempt was made to optimise the
calculation of one-electron integrals or the SCF diagonalisa-
tion and convergence procedure beyond what was essential
for reasonable speed calculations. The calculation of all-
Gaussian integrals in RIU is not heavily optimised; we
thus consider the time for Q-CHEM to calculate these integrals
in a 1-31G basis set calculation instead of the RIU time
for these integrals.

2. Q-CHEM

Q-CHEM is a well-established quantum chemistry pack-
age which uses modern algorithms for efficient evaluation of
all-Gaussian integrals.

There are some modifications to the code that needed to
be performed, specifically

1. two-electron integral screening is turned off by directly
modifying source code;

2. shell-pair cutoff has been modified to use ss overlap instead
of the pair prefactor GAB.

Suitable input parameters also ensured that the Q-CHEM
calculation was unrestricted, always used direct scf (i.e., no
storing of integrals), and always computed the full Fock matrix
in every iteration.

B. Results for R-31G vs 6-31G

1. Breakdown of R-31G timings

The breakdown of the total time of the R-31G calculation
into its component parts as shown in Tables III and IV
is illuminating. In particular, it is confirmed that ⟨R|r−1

12 |R⟩
integrals are much quicker than the ⟨R|r−1

12 |G⟩ integrals.
The numbers also reveal that as the molecule gets larger,

the calculation time for long-range integrals starts to dominate
the short-range integrals. In linear molecules, this happens
more quickly than for non-linear molecules. This occurs
because there are comparatively fewer short-range integrals in
linear molecules than non-linear molecules due to geometric
considerations.

2. R-31G vs 6-31G timings with no screening

The initial data for timings with the preliminary proof-
of-principle RIU code and Q-CHEM code, shown in
Tables III and IV, demonstrate conclusively that R-31G
calculations are competitive or faster than 6-31G calculations
for large molecules. This is great news for this new basis
set and encourages further research into optimisation of the
implementation of mixed ramp-Gaussian basis sets.

We do not yet get the full savings that are possible in a
R-31G basis set that were suggested by the BPS values in
Sec. II. This indicates there may be room for improvement of
R-31G timings with better algorithm design and/or implemen-
tation.

These initial results show a time saving for R-31G over
6-31G for some sufficient big molecules. The largest time

savings are for the linear alkane chains of 40-55 carbons where
there are savings of up to 15%.

There are many indications that R-31G has an advantage
over 6-31G for long-range integrals but a disadvantage for
short-range integrals. Specifically, R-31G gets more advantage
over 6-31G with

• linear molecules, e.g., saturated fatty acids and alkane
chains have more speed-up than the linear polycyclic
aromatic hydrocarbons, which have more speed up than
the other polycyclic aromatic hydrocarbons;

• more extended molecule, e.g., lipids give more advan-
tage to R-31G than proteins.

This is reasonable; the short-range representation of R is
much longer than the long-range representation, whereas the
two representations are the same length for G. This means
the number of intermediates required for one short-range
representation of R is much larger than for one long-range
representation of R. A reader might be concerned that three-
dimensional structures, with timings shown in Table IV,
actually take longer with R-31G than 6-31G. This occurs
because, in 3D systems, the ratio of short to long-range
integrals is greater than in 1D systems due to geometric
proximity of atoms. As the size of the 3D system increases,
however, the ratio of short to long-range integrals will
decrease, and we expect that the savings already seen in the
1D systems will start to be observed in the 3D systems.

Based on these results, optimisation of the short-range
⟨R|r−1

12 |G⟩ integrals is a useful area of future development. We
recommend two main avenues for improvements in this class
of integrals.

• Reduction in the model length. For example, the current
implementation of models for non-concentric R G
products in RIU actually uses the overlap metric
rather than the anti-Coulomb metric for simplicity.
Modification of this code to the anti-Coulomb metric as
discussed in Ref. 17 should be a priority of future code
development. Fortunately, the modelling subsection of
the code is quite modular and improvements to the
modelling process can be done without influencing
other subsections of the code.

• Alternative implementation for the evaluation of the
⟨RA

nℓm|r−1
12 |sQ

ζ ⟩ integral and its higher Gaussian angular
momentum counterparts, such as alternative more effi-
cient quadrature approach, analytic formula, recurrence
relations, and/or interpolation methods. For example,
currently 41 quadrature points are used for all integrals
to ensure accuracy; this could be made adaptive
depending on ζ , R, and n.

Introduction of screening will reduce the number of
long-range integrals without affecting the number of short-
range integrals; this will probably mean that larger molecules
are needed to show faster R-31G calculation than 6-31G
calculations.
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TABLE IV. Further timings for non-linear molecules. See caption for Table III.

ID Name
No
C

No
N,O,F

No
H Geometry ⟨R|R⟩

SR
⟨R|G⟩

LR
⟨R|G⟩

R-
containing 1-31G R-31G 6-31G % saving

Linear polycyclic aromatic hydrocarbons

8347 Pentacene 22 0 14 P 0.25 2.7 2.3 5.2 6.7 12 11 −10
109666 Hexacene 26 0 16 P 0.40 3.5 3.9 7.3 9.8 17 16 −10
4574185 Heptacene 30 0 18 P 0.63 4.2 5.2 10 14 24 22 −11
4574182 Octacene 34 0 20 P 0.86 4.9 7.2 13 18 31 28 −11
5256923 Nonacene 38 0 22 P 0.91 5.7 9.3 16 23 39 36 −8

General polycyclic aromatic hydrocarbons

8816 Triphenylene 18 0 12 P 0.18 2.4 1.5 4.1 4.9 9.0 7.7 −13
8761 Coronene 24 0 12 P 0.62 6.2 4.0 11 13 24 20 −20
60771 Ovalene 32 0 14 P 1.6 10 9.0 21 30 51 42 −21

Fullerenes

Fullerene-20 20 0 0 S 0.55 5.3 2.4 8.4 6.6 15 10 −44
Fullerene-24 24 0 0 S 0.91 7.9 4.3 13 12 25 19 −35
Fullerene-28 28 0 0 S 1.5 11 7.3 20 21 41 31 −32
Fullerene-32 32 0 0 S 2.2 16 12 30 34 64 49 −31
Fullerene-36 36 0 0 S 2.9 19 18 39 51 90 71 −28
Fullerene-50 50 0 0 S 8.1 43 53 105 159 264 207 −28
Fullerene-60 60 0 0 S 15 66 97 179 303 482 376 −28

Common drugs and biological molecules

4447623 Hydrocodone 22 0 21 0.52 6.3 3.8 10 14 24 21 −14
5768 Sucrose 23 0 22 0.43 4.9 3.7 8.9 13 22 19 −16
39888 Paroxetime

(Paxil)
24 0 20 0.51 4.2 3.5 8.2 11 19 17 −12

5775 Cholesterol 28 0 46 0.83 7.9 7.5 16 34 50 50 0
4514933 Lisinopril 29 0 31 0.61 5.7 5.7 12 21 33 31 −6
18508 Streptomycin 21 19 39 2.0 13 17 31 58 89 81 −10
54810 Atorvastatin 33 8 35 1.9 12 16 29 51 80 73 −10
4444685 Azadirachtin 35 16 44 5.6 28 42 75 133 209 184 −13
10368587 Taxol 47 15 51 7.2 30 57 94 176 270 245 −10

VII. CONCLUSIONS

In this manuscript, we have presented efficient methods
of calculating the required two-electron integrals in a mixed
ramp-Gaussian basis set. In particular, we introduce the
concept of a nuclear-centered group to group all ramp-
containing basis-function-pairs that contain the same interme-
diates, similar to, but much larger than, the shell-pair group of
all-Gaussian basis-function-pairs. We present loop structures
that highlight the major advantage of the nuclear-centered
group; the computationally expensive mathematical operations
to calculate the intermediate integrals have to be computed
far less often for ramp-containing integrals than all-Gaussian
integrals. Specifically,

• the intermediate integrals for ⟨R|r−1
12 |R⟩ have to be

calculated once per pair of heavy atoms;
• the intermediate integrals for ⟨R|r−1

12 |G⟩ have to be
calculated once per each set of atom/gaussian-shell
pair;

• the intermediate integrals for ⟨G|r−1
12 |G⟩ have to be

calculated once per gaussian shell-quartet.

Though we have only implemented integrals involving s
and p-gaussians and S-ramps, the methodologies outlined in
this paper will extend easily to higher angular momentum
Gaussians and ramps. In particular, most of the difficulty
involving new types of R G shell-pairs can be reduced to
modelling this new shell-pair as a sum of ramps; after this,
all existing code infrastructure and algorithms for calculating
two-electron integrals involving this shell-pair will work
automatically.

We concluded this paper by comparing the time of
UHF/R-31G and UHF/6-31G calculations of a variety of
moderate-sized molecules, where considerable effort has been
made to ensure fair timing comparisons. The comparative
timings suggest that UHF/R-31G is a method that is faster
than UHF/6-31G for long-range integrals but slower for short-
range integrals; we see significant improvements of up to
15% for linear molecules (such as alkane chains and saturated
fatty acids) of up to 50 carbon atoms, while calculations on
more compact molecules (such as aromatic hydrocarbons,
fullerenes, drugs and biological molecules) are slower. This
behaviour suggests that for very large molecules (beyond
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the reach of the current preliminary code primarily due to
memory considerations), R-31G will always be faster than
6-31G, providing

1. a single package where calculation of both all-Gaussian
integrals and ramp-containing integrals is optimised
(currently, Q-CHEM and RIU separately fulfil these
goals, but not in a single package with a single data
structure, etc.);

2. standard speed-ups used for all-Gaussian integral calcula-
tion can also be implemented for ramp-containing integrals,
most importantly screening of two-electron integrals via
Schwarz or related inequalities but also other tasks such
as taking advantage of symmetry and partial storage of
integrals.

Note that for all systems, mixed ramp-Gaussian basis sets
have timings of the same order of magnitude as all-Gaussian
basis sets and will thus be much faster than a comparable sized
all-Slater basis set. Thus, the algorithms and implementations
of mixed ramp-Gaussian integrals will allow this type of basis
set to replace Slater and specialised all-Gaussian basis set as a
faster alternative to produce high accuracy calculations of core-
dependent properties such as electron density at the nucleus,
core correlation, NMR parameters, and total energies.

We want to end looking towards the future. In molecular
quantum chemistry, a field that has been focused on Gaussian
basis sets for decades, in a field where all alternatives basis
sets have been found to be too slow despite considerable
effort, the promise and potential of a new type of basis set
is invigorating. And while this paper has gone a long way
towards determining how to use this new basis set in fast
calculations, already comparable to or faster than all-Gaussian
basis sets, it is only one paper and it is the nature of science that
more research makes better algorithms and faster calculations.
Further improvements in speed of Gaussian basis set integral
calculations are almost certainly incremental at this point;
a new class of largely unexplored integrals’ types surely
offer much more opportunities for large factor speed-ups. We
welcome this future research.
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